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Feasibility of solving least squares prestack Kirchhoff migration 
using multigrid methods 

Abdolnaser Yousefzadeh and John C. Bancroft  

ABSTRACT 

The multigrid technique is a powerful method for solving a linear matrix equation; for 
finding the low frequency components of the solution as rapidly as the high frequency 
components.  

We investigate the feasibility of different approaches for using the multigrid method in 
solving the linear system of Kirchhoff Least-Squares Prestack Time Migration equation.  

To date, this study shows that the standard multigrid method is not able to solve the 
Kirchhoff Least-Squares Prestack Time Migration equation for at least two reasons. First, 
the kernel of the main problem, ࡳԢࡳ, is not a diagonally dominant matrix, therefore, 
Jacobi or Gauss-Seidel iteration, the standard iterative algorithms used in multigrid 
methods, are not effective. Second, matrices are too large and dense to be loaded in the 
memory of today’s computers. 

However, the performance of the Conjugate Gradient and Kaczmarz methods as 
multigrid solvers is examined for some synthetic data sets, including Marmousi, and 
results are shown. Convergence rate of the Conjugate Gradient is independent of the 
frequency content of the solution. Therefore, it does not converge more quickly with high 
frequency contents of the solution. Since Conjugate Gradient does not smoothe, it should 
not be considered for the multigrid iterative solver.  

Using the Conjugate Gradient as an iterative solver for the multigrid method may 
slightly reduce the number of iterations for the same rate of convergence in the Conjugate 
Gradient itself. However, it does not reduce the total computational cost. 

1. INTRODUCTION 

1.1 Kirchhoff Migration  

Migration is an effective tool in seismic data processing in order to move dipping 
reflection events to their true geological locations. It also collapses diffracted energy back 
to the location of the scatterpoints. 

Hagedoorn (1954) introduced the first computational method of migration, diffraction 
summation, using ruler and compass. Kirchhoff migration was later developed, based on 
this method. In the 70’s Claerbout and Doherty (1972) showed how migration is an 
approximate solution to the wave equation. The integral formulation of the Kirchhoff 
migration was introduced by Schneider (1978). Gazdag (1978) and Stolt (1978) showed 
how to perform migration using properties of the Fourier Transform (Gary et. al., 2000). 

Each point in the geological domain is considered a diffraction point. Kirchhoff wave 
equation migration (Schneider, 1978) collapses all diffracted energies back to the original 
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scatterpoint. In the resulted migration image, each dipping reflector is moved to the 
correct location with true dip and length.  

With a simple geology structure and in the case of regularly and completely sampled 
data, Kirchhoff migration produces a good estimate of the underground reflectivity. 
However, Kirchhoff migration may not be able to reveal complex subsurface geology 
with strong lateral velocity variations. 

In a real data acquisition, especially in 3D surveys, it is difficult to have a dense and 
spatially regular sampled seismic data set. Kirchhoff migration is able to handle 
incomplete or irregular seismic data. However, incomplete data produce migration 
artifacts and may give a blurred image of the earth subsurface reflectivity.  

In order to overcome the mentioned problem, Kirchhoff migration can be augmented 
by a generalized inverse as an approximation to the exact inverse as proposed by 
Tarantola (1984). This approach is called Least-Squares migration or inversion (Nemeth 
et. al., 1999, Duquet et. al., 2000, Kuehl and Sacchi, 2001). This study focuses on the 
Prestack Kirchhoff Time Migration, therefore, Least-Squares Migration (LSM) is 
referred to as Kirchhoff Least-Squares Prestack Time Migration (LSPSTM). LSPSTM 
solves a system of large linear equations. 

A modified version of the Conjugate Gradient (CG) method, called Least Squares 
Conjugate Gradient (LSCG) (Scales, 1987) has been widely used as a solver for the LSM 
equation (Nemeth et. al., 1999, Duquet et. al., 2000, Kuehl and Sacchi, 2001, and 
Yousefzadeh, 2008). 

In the LSCG algorithm, migration and modelling are operators. Therefore, the matrix 
form of the migration and de-migration operators are avoided. In this paper, the 
feasibility and disadvantages of using the matrix form of the Kirchhoff PSTM and also 
different numerical solvers for the reflectivity inversion problem are investigated. 

The same study could be done for Kirchhoff prestack depth migration. However, in 
order to compare different solvers of prestack Kirchhoff migration the simpler and faster 
algorithm of time migration is chosen. The same results can be achieved using Kirchhoff 
depth migration. 

1.2. Kirchhoff Least-Squares Prestack Time Migration (LSPSTM) Equation 

Convolution and Kirchhoff seismic modelling with diffraction are examples in 
exploration seismology which can be formulated as algebraic linear problems. 

These problems can be written in the general form of 

ࢊ  ൌ  (1)  .ࡳ

where, in case of seismic modelling, ࢊ is the observed seismic data,  is the earth 
reflectivity model, and ࡳ is an operator acting on  in order to produce ࢊ.  

The inversion process,  
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  ൌ   (2) ,ࢊଵିࡳ

recover the earth model or reflectivity from the seismic data. Inverting the ࡳ matrix may 
be extremely difficult. Thus, approximations to the inversion are used. The first 
approximation uses the transpose of ࡳ: 

ෝ  ൌ  (3)  .ࢊԢࡳ

which is the same as Kirchhoff migration that sums energy over diffraction. In equation 3 ෝ  is the migrated image and ࡳᇱ is the migration operator. 

By defining Kirchhoff modelling as the forward process and Kirchhoff migration as its 
adjoint (transpose) operator, seismic imaging becomes an inversion problem. Substitution 
of ࢊ from equation 1 into equation 3 gives: 

ෝ  ൌ  (4)  .ࡳԢࡳ

If the Hessian matrix (ࡳᇱࡳ) was equal to the unity matrix (ࡳᇱࡳ ൌ  then Kirchhoff (ࡵ
migration would be able to reconstruct the true model of earth subsurface reflectivity. 
However, due to geometrical spreading loss during modelling or irregularity, 
incompleteness of the sampled seismic data, and existence of noise, Hessian matrix, ࡳᇱࡳ 
is different from identity matrix, ࡵ (Nemeth et. al., 1999). In such cases Kirchhoff 
prestack migration produces some artifacts in the migrated image. These migration 
artifacts can be attenuated by minimizing the difference between the observed data, ࢊ, 
and modeled data, ࡳ, expressed by |ࡳ െ  Since data include some errors, trying to .|ࢊ
find a model to fit the data perfectly is not recommended. Therefore, the exact fitting will 
be replaced by  

ࢋ  ൌ ࡳ െ  (5) ,ࢊ

where ࢋ is the error vector (Sacchi, 2005). Minimum norm solution includes finding a 
model, , that minimizes the following cost function: 

ሻሺܬ  ൌ ԡᇱԡଶ,  (6) 

subject to data constraint: 

 ԡࡳ െ ԡଶࢊ ൌ ߳.  (7) 

These two together implies the minimization of a cost function in the form of: 

ሻሺܬ  ൌ ԡࡳ െ ԡଶࢊ   ԡଶ.  (8)ଶԡߤ

A general cost (objective) function to reduce migration artifacts can be written in the 
form of (Nemeth, 1999): 

ሻሺܬ  ൌ ԡࡳ െ ԡଶࢊ   ሻ.  (9)ଶ࣬ሺߤ

where ࢊ is the observed data, which may be spatially incomplete or irregularly recorded. 
The first term in the right hand side of equation 9 is called data misfit. In the 
minimization of the cost function, ܬሺሻ, this term recovers a model to fit the data. The 
second term on the right hand-side of equation 9 is a regularization term, and μ is a 
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regularization weight. ࣬ሺሻ is a linear operator acting on  and is different for each 
purpose and uses some a priori information about model.  

After ignoring the regularization term, ߤ ൌ 0, by taking first derivative of the 
remaining cost function and setting it equal to zero, the following normal equation is 
achieved: 

ࡿࡸࡳᇱࡳ  െ ࢊᇱࡳ ൌ .  

This gives the least squares solution, ࡿࡸ,  

ࡿࡸ  ൌ ሺࡳԢ ࡳሻିଵࡳᇱ(10)  .ࢊ 

The minimum norm or Euclidian norm is the simplest form of the regularization 
function, ࣬ሺሻ ( ࣬ሺሻ ൌ ԡԡଶଶ), which leads to the Damped Least-Squares solution, ࡿࡸࡰ, to the problem: 

ࡿࡸࡰ  ൌ ሺࡳᇱࡳ   (11)  .ࢊᇱࡳሻିଵࡵଶߤ

Smoothing in the offset direction (smoothing in the direction of the hyperbola 
trajectories in a shot gather) is another constraint which can be performed on the 
LSPSTM by considering ࣬ሺሻ ൌ ԡࡰԡଶଶ, where ࡰ is the first derivative in the offset 
direction and mathematically is expressed by multiplication of the following matrix with 
a vector: 

ࡰ  ൌ െ1 1 00 െ1 10 0 െ1൩. (12) 

The first derivative operator acts as a high pass filter. Therefore, mimimization of a 
cost function with this regularization term is equal to penalizing high frequency contents. 
Solution to a LSPSTM problem with smoothing as the regularization, ܁ۺ܁ܕ, is: 

ࡿࡸࡿ  ൌ ሺࡳᇱࡳ  ᇱࡰଶߤ  (13)  .ࢊᇱࡳሻିଵࡰ

Generally, images resulted from LSM have higher resolution than from migration. 
These high resolution images can then be used in a forward problem in order to 
reproduce or interpolate the missing traces (Nemeth, 1999). 

Figure 1 compares the resolution of the Kirchhoff migration and Kirchhoff LSPSTM 
for a simple synthetic model. Figure 1a is the synthetic reflectivity model including some 
horizontal and dipping folded and faulted layers. This model is 1 km long and 1.2 sec in 
depth (time). Background velocity starts at 1300 m/s at the top and increases linearly to 
2300m/s at the bottom. Using the forward Kirchhoff prestack time modelling operator 
with five sources (250m interval in between) and 60 receivers per source (with 16.67m 
interval), synthetic data are generated. Then, 5% random noise is added to the data. The 
synthetic data is prestack migrated (Figure 1b) and LSPSTM-ed with 20 iterations in the 
CG (Figure 1c). The LSPSTM produced higher resolution image than the migration itself.  

There are two issues associated with replacing migration with LSM. The main 
problem is that the convergence of the method to the correct solution strongly depends on 
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the accuracy of the background velocity information. LSM is more sensitive to the 
accuracy of the velocity information than migration itself (Yousefzadeh, 2008).  

In addition to the dependency of the method on the accurate velocity information, 
LSPSTM requires more computer time and memory than migration. As an example, in 
solving the equation with LSCG method, each iteration in the CG requires two 
migration/modelling passes. Migration is one of the most time consuming and expensive 
procedures in the seismic data processing. 

Each Kirchhoff prestack time migration includes calculation and/or application of the 
Double Square Root (DSR) equation, proper weight function, rho filter, antialiasing filter, 
cross-correlation, and interpolation. In order to have a modelling operator which is 
exactly the adjoint of the migration operator, adjoint of all these steps must be considered 
in the modelling, as well. This procedure causes the modelling operator to be even more 
expensive than the migration operator.  

 

a)                                                b)                                  c) 

FIG. 1. a) Synthetic reflectivity model, 1.2 km length and 2 seconds depth. Background velocity 
linearly increases from 1300m/s at the top to 2300m/s at the bottom. b) Kirchhoff PSTM of the 
synthetic data from model in a). c) Kirchhoff LSPSTM after 20 iterations in the LSCG. Image of 
LSPSTM has higher resolution than standard migration. 

1.3. Solving the LSPSTM Equation 

The CG method is the classical solver in seismic inversion problems. In this study, the 
feasibility of using multigrid properties in solving LSPSTM in order to reduce the 
computational cost or enhance the resolution of the resulting image is investigated.  

To understand the multigrid methods, the method of Jacobi iterations and its properties 
are explained in detail in the next section. Then the feasibility of using standard multigrid 
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methods for solving LSPSTM is investigated. It is shown why standard multigrid 
methods are not applicable to the mentioned problem. 

In the last next section, the results of using the multigrid CG method on the mentioned 
problem is shown.  

2. MULTIGRID METHODS 

The performance of least squares seismic inversion usually requires solving a large 
system of linear equations in the general form of:  

࢛  ൌ  (14)  ,࢈

where  is a general ܯ ൈ ܰ matrix, for example Hessian,  ࡳԢࡳ, in equation 10 or ࡳᇱࡳ   is the unknown, exact ࢛ is a vector with M elements and ࢈ ,in equation 11 ࡵଶߤ
solution (model) vector. 

In linear algebra, methods to solve equation 14 are placed in the one of these two main 
groups (Strang, 1986): direct methods such as Gaussian elimination, which find the exact 
solution. Iterative methods, on the other hand, try to improve an initial estimation of ࢛ to 
obtain a reasonably good approximation to the exact solution. In the stationary iteration 
methods, for example Jacobi, convergence steps are applied after each iteration while in 
the gradient methods, for example CG and Krylove, changes are applied within the 
iteration to find the solution faster (Strang, 1986).  

In the LSPSTM equation Hessian matrix, ࡳԢࡳ, is a large matrix which may never be 
solved using direct methods. The size of ࡳ equals the number of grids in the model 
multiplied by the number of observations (data). In such cases direct methods are not 
efficient.  

2.1 Multigrid Solvers 

Multigrid methods use one special property of the Jacobi and Gauss-Seidel methods in 
order to converge to the solution more rapidly, with better recovery of the low frequency 
components of the solution.  

The ability to use multigrid methods to solve many types of PDEs more rapidly than 
other iterative methods is proven (Briggs et. al., 2000). In this study, we attempted to use 
the multigrid method to solve Kirchhoff LSPSTM in order to reduce the computational 
costs or enhance the resolution of the resulted image. 

Using multigrid methods for solving seismic problems is not a new idea. Bunks et. al. 
(1995) used the multigrid method to perform seismic waveform velocity inversion on the 
Marmousi data set. Their idea was eliminating the local minima of the objective function 
by solving the problem on a coarser grid in order to guarantee convergence to the global 
minimum and avoid local minima, which are closer to the starting point. 

The multigrid method is used to enhance the resolution of the seismic data during 
deconvolution (Millar and Bancroft, 2004). They showed better recovery of reflectivity 
and low frequency damping than the Gauss-Seidel method. However, they claimed that 
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successfulness of the method depends on the good estimation of wavelet and also the 
frequency content of the data (Millar and Bancroft, 2004).  

Plessix (2007) studied the effects of using multigrid cycles for the 3D frequency 
domain wave equation migration. He considered the result of using the multigrid method 
on the undamped wave equation at seismic frequencies. 

In order to understand how the method of multigrid works, it is necessary that some 
properties of the Jacobi (and Gauss-Seidel) method be explained in detail.  

2.2. Methods of Jacobi and Gauss-Seidel 

In equation (14) (࢛ ൌ ,ሻ࢈  is considered ࢜ is the unknown desired exact solution. If ࢛
as an approximation to the exact solution, ࢛, then the (algebraic) error, ࢋ, is the 
difference between these two solutions: 

ࢋ  ൌ ࢛ െ  (15)  .࢜

The norm of vector ࢋ is usually expressed as the error (Briggs et. al., 2000). The 
maximum norm, ԡࢋԡஶ, is the largest absolute value of the vector elements:  

 ԡࢋԡஶ ൌ หݔܽ݉ ݁ห.  (16) 

The euclidean norm or L2-norm, ԡࢋԡଶ, of a vector ܍ with ݊ elements is expressed by 
(Briggs et. al., 2000): 

  ԡࢋԡଶ ൌ ට∑ ݁ଶୀଵ  .  (17) 

Because ࢛ is unknown, ࢋ is not directly computable. Therefore, residual, a 
measureable version of the error, is defined by: 

࢘  ൌ ࢈ െ  (18) .࢜

Residuals can be written as:  

࢘  ൌ ࢛ െ ࢜ ൌ ࢛ሺ െ ሻ࢜ ൌ  (19) .ࢋ

Equation (19) (࢘ ൌ  ࢜ is called the “residual equation” (Briggs et. al., 2000). With (ࢋ
as an approximation to ࢘ ,࢛ is computable from equation (18). Again solving the residual 
equation for ࢋ, gives a new approximate solution using equation (15) in the form of ࢛ ൌ ࢜   :Substitution of the residual equation into equation (15) gives .ࢋ

࢛  ൌ ࢜   (20)  ,࢘ଵିࡼ

where ࡼ ؆  ,.is a preconditioner. This suggests iterations in the form of (Briggs et. al ,
2000):  

ାଵ࢜  ൌ ࢜   (21)  ࢘ଵିࡼ
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In the Jacobi method, preconditioner ࡼ is the diagonal matrix of ࡼ : ൌ  With this .ࡰ
in mind, and splitting matrix  to ࡰ, a diagonal matrix, and – ሺࡸ   ሻ, summation of theࢁ
lower and upper triangle matrices, (or  ൌ ࡰ െ ࡸ െ  :equation (14) can be written as ,(ࢁ

࢜ࡰ  െ ሺࡸ  ࢜ሻࢁ ൌ ࢜ࡰ   or  ࢈ ൌ ሺࡸ  ࢜ሻࢁ   (22)  .࢈

This leads to the following equation:  

࢜  ൌ ࡸଵሺିࡰ  ࢜ሻࢁ   (23)  ,࢈ଵିࡰ

which suggests the Jacobi iterations in the form of (Briggs et. al., 2000):  

ାଵ࢜  ൌ ࡸଵሺିࡰ  ࢜ ሻࢁ   (24)  .࢈ଵିࡰ

The advantage of choosing ࡰ, the diagonal matrix of , as the preconditioner is that it 
is easily invertible. The inverse of a diagonal matrix can be simply found by inversing the 
nonzero (diagonal) elements of that matrix (Strang, 1986). 

By definition of the Jacobi iteration matrix, ࡾ, as ࡾ ൌ ࡸሺିࡰ   ሻ, the Jacobiࢁ
method can also be expressed by (Briggs et. al., 2000): 

ାଵ࢜  ൌ ࢜ࡾ   (25)  .࢈ଵିࡰ

The weighted Jacobi method is a modification to the Jacobi method in the form of 
(Briggs et. al., 2000): 

ାଵ࢜  ൌ ሺሺ1 െ ࡵሻݓ  ࢜ ሻࡾݓ  ,࢈ଵିࡰݓ 0 ൏ ݓ ൏ 2,  (26) 

where ݓ א ࣬ is weighting factor. By defining weighted Jacobi iteration, ࡾ௪ ൌሺ1 െ ࡵሻݓ  ݓ ܴ, the Jacobi method has the following matrix shapes (Briggs et. al., 
2000): 

ାଵ࢜  ൌ ݒ௪ࡾ   (27) ,࢈ଵିࡰݓ

and 

ାଵ࢜  ൌ ࢜   , (28)࢘ଵିࡰݓ

or component forms (Saad, 2000): 

ାଵݒ  ൌ ଵ ቆܾ െ ∑ ܽ ݒேୀଵஷ ቇ , ݅ ൌ 1,2, … , ܰ, (29) 

where ݇ is the iteration number and ݅ is the component number of the vectors ࢈ and ࢜. 
Starting from an initial value for ࢜, in each iteration all components of ࢜ାଵare 
calculated, then ࢜  is replaced by ࢜ାଵ. This procedure repeats until the desired 
convergence is achieved. 

In the Gauss-Seidel method, each component is replaced as soon as it is updated, 
which leads to (Saad, 2000): 
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ାଵݒ  ൌ ଵ ቆെ ∑ ܽ ݒାଵିଵୀଵ െ ∑ ܽ ݒேୀାଵ െ ܾቇ , ݅ ൌ 1,2, … , ܰ,  (30) 

This reduces the necessary memory to keep all components of ݒାଵbefore updating 
and decreases the number of iterations for the same rate of convergence. By defining the 
Gauss-Seidel iteration by ீࡾ ൌ ሺࡰ െ  in the matrix form, the Gauss-Seidel ,ࢁሻିଵࡸ
method may be expressed by: 

ࢂ  ՚ ࢂ ீࡾ  ሺࡰ െ  (31) ,࢈ሻିଵࡸ

where “՚” shows the displacement of elements. 

2.3. Analysis of Jacobi Convergence and the multigrid method 

The convergence of the Jacobi (and the Gauss-Seidel) iterations is guaranteed if and 
only if the magnitude of all eigenvalues of ࡾ be less than 1 (Strang, 1986):  

|ሻீࡾሺߣ|  ൏ 1   (32) 

The spectral Radius of a matrix, ρ, is the maximum amount of its eigenvalues: ߩሺீࡾ ሻ ൌ ሻ ீࡾሺߩ ሻ|. The Jacobi and the Gauss-Seidel methods converge if and only ifீࡾሺߣ|ݔܽ݉ ൏ 1. The speed of convergence depends on the amount of ߩሺீࡾ ሻ. Smaller ߩሺீࡾ ሻ 
causes faster convergence to the solution (Strang, 1986). 

In order to explain the role of the Jacobi iterations in the multigrid method, let us 
consider a system of equation (14) where  is the second difference matrix: 

  ൌ ێێێۏ
ۍ 2 െ1െ1 20 െ1 0 0െ1 02 െ1 ڭڮ ڰ ڮڭ 2 ۑۑۑے

ې
. (33) 

Therefore, the Jacobi iteration matrix is: 

ࡾ  ൌ ێێێۏ
0ۍ 11 00 1 0 01 00 1 ڭڮ ڰ ڮڭ 0 ۑۑۑے

ې
. (34) 

The eigenvalues of  are ߣሺሻ ൌ 2 െ 2 ݏܿ ߠ where ,ߠ݆ ൌ గேାଵ. Thus, ߣ൫ࡾ൯ ൌߣ൫ܫ െ 1 2ൗ ൯  ൌ ݏܿ ߠ݆ ൏ 1 and convergence is guaranteed. For example if ܰ ൌ 4, then ࡾ has four eigenvalues as (Briggs et. al., 2000): 

ߣ  ൌ ݏܿ గହ , ݏܿ ଶగହ , ݏܿ ଷగହ ݏܿ ݀݊ܽ  ସగହ  ቀൌ െܿݏ గହቁ. (35) 

As observed, ߣs are larger for smaller angles. It means that the convergence is slower 
for lower frequencies of the solution. This is a general property of the Jacobi iterations.  
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Removing high frequency contents from residuals in the Jacobi (and the Gauss-Seidel) 
first few iterations produces a smooth (includes mostly low frequency contents) error 
vector. This “smoothing” property is shown in an example; consider the system of 
equation 

࢞  ൌ , (36) 

where  is the second difference matrix in equation (33), with ݊ ൌ 64. The trivial exact 
solution is ࢞ ൌ , therefore, ࢋ ൌ െ࢜. Let us apply the weighted Jacobi method (with ݓ ൌ 2/3) to solve this equation with 0࢞ ൌ ݊݅ݏ ቀగ ቁ , 0  ݆  ݊, 1  ݇  ݊ െ 1, the 

Fourier modes with the frequency ݇, as the initial guess.  

Figure 2a shows the convergence rate of the weighted Jacobi method for different 
initial values with ݇ ൌ 1, 4, 8 and 16. There is a faster convergence to the solution by 
choosing an initial guess with higher frequency contents (larger ݇s). The solutions after 
100 iterations are shown in figure 2b. Again, with higher frequency content in the initial 
value, the solution is closer to the exact solution, ࢞ ൌ .  

 

a)                                                                       b)    

FIG. 2. a) The maximum norm error versus number of iterations is plotted for the weighted Jacobi 
iterations for different initial values to solve equation 36. b) Solution after 100 iterations.  

The weighted Gauss-Seidel method behaves similarly for this equation, as shown in 
figure 3a. Figure 3b shows the convergence when initial values are a superposition of the 
four Fourier modes with both low and high frequencies. The initial fast decrease 
corresponds to the presence of high frequencies in the initial value. 

Now let consider the initial guess to be a superposition of the four previous Fourier 

modes, 0ݔ ൌ ଵସ ቂ݊݅ݏ ቀగ ቁ  ݊݅ݏ ቀସగ ቁ  ݊݅ݏ ቀ଼గ ቁ  ݊݅ݏ ቀଵగ ቁቃ. The convergence for the 

weighted Jacobi iterations starting with this initial guess is shown in figure 3b. In first 
five iterations the error decreases rapidly. Then, the convergence becomes slower. The 
faster decrease corresponds to the presence of the high frequency components in the 
initial value and less rapid decrease is due to the lower frequency components of the 
initial value (Strang, 1986). 
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a)                                                                       b)    

FIG. 3. a) The maximum norm error versus number of iterations for the weighted Gauss-Seidel 
method with different initial values. b) Convergence when initial values are superposition of the 
four Fourier modes with both low and high frequencies.   

This property, leads to the multigrid idea. In the multigrid method , an iterative solver 
(Jacobi or Gauss-Seidel, generally), produces low frequency contents in the residual after 
a few iterations of equation (14). By restriction, the kernel of the main problem and its 
residual are transferred to a coarser grid (scale), where the low frequency components act 
as the high frequency components. Solving the original equation with this initial guess, 
gives a solution which also contains more low frequency components than the solving 
equation with a vector of zeros as the initial guess (Strang, 1986). 

A v-cycle multigrid method starts with a few (three for instance) iterations on the fine 
grid, then the error is transferred to a coarser grid by a restriction process. Iterations are 
performed on the coarse grid, and the interpolated results are used as the starting point in 
the Jacobi method on the finer (main) grid.  

There are two processes in the multigrid method for transferring the problem to the 
coarser or finer grid (Strang, 1986): multiplying by the restriction matrix, ࡾ, which 
transfers the problem from the finer grid to the coarse grid; and multiplying by the 
Interpolation matrix, ࡵ, which returns the problem back to the finer grid. 

A v-cycle multigrid method includes only two grids: fine grid (with the size of the 
main problem) and coarse grid (Figure 4). Iterations (weighted Jacobi or Gauss-Seidel) 
start with zero as the initial model to solve equation ࢛ ൌ  ݄  on the fine grid where࢈
corresponds to the size of the main grid which is the finest grid. After a few iterations, the 
residual to equation ࢛ ൌ ࢘  is calculated as࢈ ൌ ࢈ െ  . Then multiplication of࢛
the Restriction matrix converts ࢘ to the coarser grid ࢘ଶ, where 2݄ corresponds to the 
first coarser grid with size equal to half of the original grid size. Solving ଶࢋଶ ൌ  ଶ࢘
for ࢋଶ on the coarse grid requires a few more iteration, and then the solution, ࢋଶ, must 
be interpolated to the fine grid as ࢋ. Finally, iterations to solve ࢛ ൌ   start with the࢈
improved initial value ࢛   . A few iterations on this problem size/grid returns aࢋ
solution which include both low and high frequency contents (Strang, 1986; Briggs et. 
al., 2000). 
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FIG. 4. Schematic v-cycle multigrid. Main problem is solved on the fine grid and residuals which 
are restricted to the coarse grid with two grids are used to solve equation in the coarse grid. 
Solutions are interpolated to the fine grid and used as the initial value for iterations on the main 
grid.  

The simplest algorithm in the multigrid method is a v-cycle. It is possible to calculate 
the residuals in the coarse grid, ࢘ଶ ൌ ଶ࢘ െ  ଶ, and restrict it to a coarser grid 4݄ࢋଶ
and repeat the procedure to a very coarse grid, ݄݊!. This algorithm is known as V-cycle. 
W-cycle algorithm performs more iteration on the coarser grids (Strang, 1986; Briggs et. 
al., 2000).  

In the full multigrid method (FMG), iteration starts on the coarsest grid, the solution is 
interpolated and used as the initial value for one step finer grid. A v-cycle improves the 
result. Then, result will be used for the finer grid, a V-cycle improves this result and the 
process continues to arrive to the finest grid which is the size of the initial problem 
(Strang, 1986; Briggs et. al., 2000). 

To compare the advantages of using the multigrid method to the Jacobi method, 
consider equation 

 

࢞  ൌ is the mentioned second difference matrix, and ܾ  where ,࢈ ൌ ଵସ ቂ݊݅ݏ ቀగ ቁ  ݊݅ݏ ቀସగ ቁ  ݊݅ݏ ቀ଼గ ቁ  ݊݅ݏ ቀଵగ ቁቃ, where ݊ ൌ 64. Figure 5 shows 

the convergence of the Jacobi method after 10 iterations and the full multigrid method 
after 5 iterations on each grid size. After 10 iterations, the residual norm in the Jacobi 
method reaches 75% where in the full multigrid method it reaches 13% after only 5 
iterations on each grid. The time spent in the coarse grids is small in comparison to the 
time spent in the main problem (finest grid). Therefore, the multigrid method is cheaper 
than applying many Jacobi iterations to arrive to the same solution.  
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FIG. 5. The residuals norm error versus number of iterations is plotted for the weighted Jacobi 
iterations and full multigrid iteration in the last cycle. The FMG converges to %13 of the starting 
point in the residuals norm where Jacobi reaches %75 after 10 iterations. 

3 SOLVING LSPSTM USING STANDARD MULTIGRID METHODS 

3.1 Applying Standard Multigrid Solvers to the LSPSTM Equation 

In using the explicit form of the matrix ࡳԢ (migration), instead of the migration 
operator, once ࡳ′ is calculated inside the migration operator, there is no requirement for 
the recalculation of the DSR equation, weight function, rho filter, and interpolation 
coefficients on each iteration. All these calculations are hidden in the matrix ࡳ and a 
proper matrix-vector multiplication is equal to the performing of all necessary procedures 
of migration. Therefore, multiplication of ࡳ (or ࡳ′) with vectors may be cheaper than 
migration or modelling. This seems to be one advantage of using the explicit form of ࡳ 
instead of the operator form, where in a LSCG scheme these processes are repeated 
several times.  

Mathematically, if a problem is solvable by a multigrid method, it will be solved faster 
and with better recovery of low frequency contents than many other methods such as 
Successive Over Relaxation (SOR) and CG (Stuben, 2002). The multigrid method uses 
Jacobi or Gauss-Seidel algorithms for smoothing. In both methods it is necessary to 
extract the diagonal elements of matrix  (in equation 14) and invert it. Therefore, it is 
necessary to have ࡳ in the explicit matrix form. From this point of view, the multigrid 
method may increase the speed of convergence, but it increases the required memory to 
load matrix ࡳ. 

In order for convergence of the Jacobi and Gauss-Seidel methods to be guaranteed, it 
is necessary that the magnitude of every eigenvalue of ࡾ be less than 1 (|ߣሺீࡾሻ| ൏ 1 ). 
Equivalently, matrix  (in equation 14) must be diagonally dominant. Otherwise, these 
methods do not converge to the solution. A matrix  is strictly diagonally dominant if for 
all elements ܽ of the matrix: 

 |ܽ|  ∑ หܽหஷ  (37) 

where ݅ and ݆ are the number of rows and columns, respectively. 

However, the experience with the explicit form of matrices ࡳ and ࡳ′ࡳ, for different 
geometries of seismic data acquisition patterns, shows that they are relatively dense 
matrices. The presence of many non-zero and relatively large elements in each row 
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prevents the diagonal element from being dominant (larger than sum of absolute values 
of non-zero elements). 

 For instance, for a modeling operator with two sources with 180 m interval spacing 
and five receivers per source with 72 m interval spacing and with a model 632 m long 
distance and 0.512 seconds depth, matrix ࡳ′ࡳ has 10% nonzero elements as shown in 
figure 6b. Figure 6a shows the non-zero elements of the matrix ࡳ, the modeling operator. 
Figure 6c shows the ratio of absolute values of diagonal elements to the sum of absolute 
values of nondiagonal elements for each row of the matrix ࡳԢࡳ. This example and many 
other examples showed that the Hessian matrix is a dense and diagonally non-dominant 
matrix. Numerical examples showed that adding some white noise or a reasonably large 
constant scalar to the diagonal elements of the Hessian matrix does not change it to a 
(strictly) diagonally dominant matrix. 

The experiment applies the restriction operator several times on the Hessian matrix, ࡳ′ࡳ, and converts it to a very coarse matrix. It does not change the diagonal non-
dominancy of the matrix. In fact, the restricted matrix is denser than the original matrix. 
Therefore, the idea of moving the main problem from the main grid to a coarser grid, 
performing the standard multigrid method on the coarse grid and using the interpolated 
result as the initial value for another iterative method such as CG, is not applicable. 

Another possibility would be reducing the size of ࡳ (and ࡳ′ࡳ) by solving for each 
column of the model at each time (݅ݔ ൌ 1, … , ݔfrom ሺܰ ࡳ′ࡳ This procedure reduces the size of .(ݔܰ ൈ ሻଶ to only ሺ1ݖܰ ൈ  are numbers of model grid in ݖܰ and ݔܰ ሻଶ whereݖܰ
the horizontal (usually equal to the number of CMPs) and vertical directions, 
respectively.  

By inverting for each column separately and putting the resulted inverted columns 
next to each other, the inversion image is achieved. This separation is valid only when 
horizontal velocity variations of the subsurface are small. However, matrix ࢞ࡳ′࢞ࡳ, is not 
a diagonally dominant matrix and solvable by Jacobi or gauss Seidel methods. 

Therefore, the main precondition for the Kirchhoff LSPSTM problem to be solvable 
by standard solvers of the multigrid methods is violated. Therefore, at least in its standard 
form, the multigrid method is not an effective solver for the LSPSTM problem.  
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a)     

FIG. 6. a) Non-zero elements of the matrix ࡳ for the mentioned geometry. Matrix is dense and 
there are many non-diagonal elements.  
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b)    

 

c)    

FIG. 6. b) Non-zero elements of matrix ࡳԢࡳ, matrix is more dense than matrix ࡳ. c) The ratio of 
absolute values of diagonal elements to the sum of absolute values of nondiagonal elements for 
each row of ࡳԢࡳ.  
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3.2. The problem with the Large Size of ࡳ matrix 

In order to solve equation 10 by multigrid methods, matrices ࡳ (and ࡳ′ࡳ) need to be 
calculated. The size of matrix ࡳ equals the number of data values (number of traces 
multiplied by the number of samples per trace) multiplied by the number of values in the 
migration image (usually the number of CMPs, Nx, multiplied by the number of depth 
samples, Nz). Therefore, especially in 3D seismic surveys, ࡳ can be large enough to be 
impossible to be loaded in the memory of today’s computers.  

For example, a 20 km long 2D seismic line in the Gulf of Mexico includes almost 
150,000 traces, with 1800 CMPs, each has 1750 samples. The size of matrix ࡳ for a time 
migration for this 2D line is 150,000 ൈ 1751 ൈ 1751 ൈ 1800 ൌ 8.3 ൈ 10ଵସ samples 
which require more than 6000 TB memory to be loaded. The most efficient multigrid 
algorithms need at least twice this memory. In the case of a marine 3D survey, this 
number can be hundreds of times larger.  

Many examples show that multiplication of ࡳ or ࡳԢto the vectors are more costly than 
applying migration and modelling operators and this is due to the large size and non-
sparseness of ࡳԢࡳ matrix. 

4. MULTIGRID LSPSTM WITH OTHER ITERATIVE SOLVERS 

In order to be effective, multigrid techniques require an iterative method to be a 
smoother when used as the solver. The smoother must be able to find the high frequency 
contents of the solution and leave the low frequency contents in the residuals after a few 
iterations. When the multigrid method is not effective using its standard iterative 
smoothers, Jacobi and Gauss-Seidel for example, other iterative methods may be 
examined. 

4.1. Kaczmarz Method 

The kaczmarz method is an iterative method for solving systems of linear equation 
(14). The method of Kaczmarz initially invented to solve tomography problems. It is not 
as fast as many other iterative solvers such as CG. However, it does not require the 
matrix  (in equation 14) to be diagonally dominant or positive definite (Kaczmarz 
method, 2009).  

In this method, system of linear equation 14 (where  is a general ܯ ൈ ܰ matrix) is 
being considered as the composition of ܯ systems ,.࢛ ൌ  . ,. is ݅th row of , where࢈
Each of  ܯ,.࢛ ൌ   . is a n-dimensional hyperplane in the ܴ space (Aster, 2005)࢈

The algorithm starts with an initial guess ࢛. Projecting the initial guess onto the 
hyperplane defined by ,.࢛ ൌ ݅ ,࢈ ൌ 1, returns ࢛ଵ. The same procedure for the second 
row of , ݅ ൌ 2, using ࢛ଵ, returns ࢛ଶ. The procedure is repeated for all ܯ rows. If the 
desired convergence has not been achieved, the cycle repeats with newly calculated ࢛, as 
many times as preferred (Aster, 2005). 
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The Kaczmarz algorithm is an iterative method with smoothing properties 
(McCormick, 1987). However, it is more effective on sparse and rank efficient matrices. 
Numerical experiments showed that it is not a good solver for the LSPSTM problem.  

In addition to the convergence problem, the limitation of computer memory is still a 
problem. We are looking for a method to avoid loading big matrixes of ࡳ′ࡳ leads to the 
CG method. 

4. 2. CG Method 

When  is a positive definite matrix, Steepest Descent is a powerful method to solve 
equation (14). When or  (or ࡳ′ࡳ in equation 10) is positive definite, the quadratic form 

of  ݂ሺ࢛ሻ ൌ ଵଶ ்࢛࢛ െ ்࢛࢈  ܿ has a paraboloid shape with a minimum which is 

equivalent to the solution to equation (14) (Shewchuk, 1994). In the method of Steepest 
Descent the algorithm starts at an arbitrary point and follows the opposite direction of the 
maximum gradient until the gradient changes. Then algorithm changes the direction to 
find a new minimum. The procedure continues until it arrives at the minimum which is 
the exact solution in case of linear problem. 

In the method of Conjugate Gradient (CG) (Hestenes and Steifel, 1952) which is an 
improvement to the Steepest Descent, the new direction is orthogonal to all previous 
directions. Therefore, CG converges to the solution in fewer iterations than Steepest 
Descent (Shewchuk, 1994).  

CG requires that ࡳ′ࡳ be symmetric and positive definite matrix. Least-Squares 
Conjugate Gradient (LSCG), a modified version of CG method, does not require this 
condition and directly works with ࡳ and ࡳ′ matrices (Scales, 1987). If equation ࡳ ൌ  ࢊ
is an overdetrermined problem, then ࡳ′ࡳ is nonsingular and LSCG converges to solve 
equation ࡿࡸࡳ′ࡳ ൌ  is the ࡳ′ࡳ However, since the condition number of matrix .ࢊ′ࡳ
square of the condition number of matrix ࡳ, convergence of the LSCG method is slower 
than convergence of the CG method. 

However, by replacing the method of CG with LSCG the multiplication of the 
matrices ࡳ or ࡳ′ with vectors is replaced by applying forward (seismic modelling or de-
migration) or adjoint (seismic migration) operators to the model or data, respectively. 
This procedure reduces memory required to load big matrixes ࡳ and ࡳ′ into the computer 
and also avoids big matrix-vector multiplications.  

A LSCG’s algorithm with Fletcher-Reeves (Shewchuk, 1994) line search method to 
solve ࡿࡸࡳ′ࡳ ൌ  :is ,ࢊ′ࡳ ൌ  ࢙ ൌ ࢊ െ ࢘ ࡳ ൌ  ࢙′ࡳ ൌ  ࢘
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 ൌ ݅ ࡳ ൌ 0 

݅ ݎ݂  ൌ 1: ାଵߙ ݏ݊݅ݐܽݎ݁ݐ݅ ݂ # ൌ . ࢘ . ࢘  ାଵ  ൌ   ାଵߙ ାଵ࢙  ൌ ࢙ െ ାଵ࢘ ାଵߙ ൌ כ   ାଵ࢙Ԣࡳ       migration ߚାଵ ൌ ࢘.࢘ శభ࢘. శభ࢘ ାଵ   ൌ ࢘  ߚ ାଵ †  ൌ ככ  ାଵࡳ     modeling ݅ ൌ ݅   ݎ݂݀݊݁ 1

There are two multiplications of ࡳ or ࡳ′ matrices with vectors (lines marked by כ and ככ, respectively) in each iteration. Since there is not any decomposition of ࡳ or ࡳ′in the 
CG algorithm, it is possible to use operators instead of multiplication of explicit forms of ࡳ or ࡳ′ matrices with vectors. However, each iteration in the LSCG has twice the 
computational cost of one migration (or modelling). For example, time cost of 10 
iterations in the LSCG is equal to time cost of 20 migrations. 

For a linear problem with any starting point, Steepest Descent and CG methods always 
converge to the solution after ݊ iterations (Shewchuk, 1994). In the case of a nonlinear 
problem, replacing the Fletcher-Reeves line search (in line marked by †) with the non-
negative Polak-Ribiere-Polyak line search, 

ାଵߚ  ൌ ,ቄ0 ݔܽ݉ ࢘.࢘ ሻ࢘ି శభ࢘ శభ .ሺ࢘ ቅ,  (38)  

is a better choice.  

However, in the case of nonlinear problems, the best result is achievable when the 
starting point is considered to be close to the global minimum of the quadratic function. 
In a linear problem, any “rough estimate” of ࢞ is suitable as the initial guess (Shewchuk, 
1994). If there is not any other information about ࢞ ,࢞ ൌ  is chosen.  
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Convergence of the CG method depends on the ill-conditioning of the matrix. 
Convergence is slower for problems with larger condition numbers (more ill-conditioned 
problems). 

4.3. Multigrid CG Versus CG 

CG is a powerful method for solving linear equation (14). LSPSTM after a few 
iterations in CG retrieves a high resolution image of the earth subsurface reflectivity. 
However, CG does not have smoothing propertieswhich is an essential property for a 
solver to be used in the multigrid method. In fact, the Steepest Descent and CG methods 
are “roughers” and not smoothers (Shewchuk, 1994). 

To show that CG is not a smoother, let consider solving equation (36) with 0࢞ ൌ݊݅ݏ ቀగ ቁ , 0  ݆  ݊, 1  ݇  ݊ െ 1, the Fourier modes with the frequency ݇, as the 

initial value. Figure 7 shows the convergence for different frequency contents, ݇ ൌ1,4,8,16, in the initial value. There is not any relationship between the rate of 
convergence and the frequency content of the initial value. Starting with any initial value, 
CG converges to the solution in less than ten iterations. It is important to mention that the 
convergence of CG is faster than the convergence of the weighted Jacobi or Gauss 
Seidelmethods even if the initial value includes mostly high frequency contents as shown 
in figure 2.  

 

FIG. 7. The maximum norm error versus number of iterations is plotted for the CG iterations with 
different initial values. No relationship between rate of convergence and frequency content of 
initial value is visible.  

This property is investigated for solving LSPSTM problem. Figure 8a shows the 
convergence rate of LSCG for the synthetic model of figure 1 with wavelets having 
different dominant frequencies. This figure shows no better convergence when the 
wavelet (and consequently the data) has higher frequency content. Therefore, the 
convergence of the CG method for any linear problem such as LSPSTM does not depend 
on the frequency contents of the data. The same conclusion is achieved by solving 
LSPSTM with smoothing in the offset direction as the regularization (Figure 8b). The 
convergence of LSCG strongly depends on the condition number of the kernel matrix and 
not on the starting point. 
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This property is shown on a complex model of the Marmousi data set. It is necessary 
to mention that the Kirchhoff  time migration is not a suitable method of migration for the 
Marmousi data set which is a geologically complex model. The Marmousi data set needs 
a depth migration instead of a simple Kirchhoff time migration. However, imaging of the 
Marmousi data set is not the main goal of this study. The advantages of using 
multigridmethods over other methods of solving LSPSTM is the main idea for using the 
Marmousi data set.  

Figure 9 shows the convergence of LSPSTM of the Marmousi data filtered by 
different band-pass filters. In figure 9, L-Pass, B-Pass I, B-Pass II, and H-Pass curves 
correspond to convergence of LSCG of the Marmousi data passed through a low pass 
(f ൏ band pass (15Hz ,(ݖܪ15 ൏ ݂ ൏ band pass (30Hz ,(ݖܪ30 ൏ ݂ ൏  and high ,(ݖܪ45
pass (45Hz ൏ ݂) filters, respectively. There is not any clear relationship between the 
frequency contents of the data and the rate of convergence. However, it seems that there 
is a faster convergence for the very low frequency (less than 15 Hz) data which may be 
related to the roughness property of the CG method. 

 

a)                                                                       b)    

FIG. 8. a) Convergence of LSCG to solve damped LSPSTM for synthetic data of figure 1a with 
wavelets with different dominant frequencies: 10, 35, 60 and 85 Hz. b) Same result with 
regularized LSPSTM (smoothing in the offset direction). 

 

FIG. 9. Convergence of LSCG to solve LSPSTM for the filtered version of the Marmousi data set. 
L-Pass: ݂ ൏ ݖܪB-Pass I: 15 ,ݖܪ15 ൏ ݂ ൏ ݖܪB-Pass II: 30 ,ݖܪ30 ൏ ݂ ൏ ݖܪH-Pass: 45 ,ݖܪ45 ൏ ݂. 
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When an iterative method does not converge faster for data with higher frequency 
content than for data with low frequency content, it does not leave low frequency 
contents in the residuals to act as a smoother. Therefore, CG (and LSCG) should not be 
effective solvers for the multigrid method. However, different approaches of applying 
multigrid LSCG to the LSPSTM equation may be examined. 

There are three main approaches for applying multigrid methods to a LSPSTM 
equation. Restriction and interpolation of a LSPSTM problem can be applied in each 
direction, horizontal (distance), vertical (time), or both directions of the model in order to 
transfer the problem to a higher or lower grid size. As seen in the previous section, 
applying multigrid methods in the vertical (time) direction should not improve the 
performance of LSM since there is no faster convergence for the lower frequency 
components of the data. 

Using multigrid LSCG with restriction and interpolation in the distance direction is 
investigated by comparison between multigrid LSCG and LSCG. Restriction to a coarser 
grid is performed by deleting half of the traces (leaving one trace and removing next one) 
from the migration image in order to move to a coarser grid.  

Figure 10 shows the performance of the multigrid LSCG versus LSCG for the 
synthetic example of figure 1. Figure 10a shows the true model, figure 10b shows the 
image from Kirchhoff LSPSTM with five iterations on the LSCG, and figure 10c shows 
the result of full multigrid LSCG with five iterations on each grid. Comparison between 
figures 10b and 10c shows that the multigrid method has not improved the result.  

Figure 11 shows the result of solving LSPSTM for the Marmousi data set with LSCG 
(Figure 11a) and multigrid LSCG (Figure 11b). Again there is not much improvement 
when using multigrid LSCG instead of LSCG.  

The same conclusion is reached when solving regularized (smoothing in the offset 
direction) LSPSTM as shown in figure 12.  
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FIG. 10. Comparison between LSCG and multigrid LSCG for the synthetic model of figure 1, a) 

model, b) LSCG, c) Multigrid CG. 

 

 FIG. 11. Comparison between LSCG and multigrid LSCG to solve LSPSTM of the Marmousi 
data set with 2 iterations on each grid. a) LSCG, b) Multigrid CG. 
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4.4. Feasibly of Using Reverse-v Cycle Multigrid CG 

When CG is a rougher, and not a smoother (Shewchuk, 1994), a new multigrid method 
, reverse-v (Λ) cycle, may be considered.  

In this method, the problem may be solved in the main grid size and then, results 
which include mostly high frequency contents, interpolated to a finer grid where high 
frequency contents act as low frequency contents. In this new grid size, the problem is 
solved and the restricted solution added to the solution in the main grid size to be used as 
the new initial value in the main problem. 

However, this method is not effective in LSPSTM for two reasons: first, solving 
LSPSTM in a grid finer than the main problem is very costly; second, roughness property 
of CG is not as obvious as the smoothness property of the Jacobi method (shown in 
figures 8 and 9). It seems that the convergence of CG is faster with an initial value with 
very low frequency contents in the initial model. For higher frequencies, there is not any 
clear relationship between rate of convergence and the frequency contents of the initial 
value, at least for the mentioned problems.  

 

FIG. 12. Comparison between LSCG and multigrid LSCG to solve regularized LSPSTM of the 
Marmousi data set with 5 iterations on each grid. a) LSCG, b) Multigrid CG. 

5. SUMMARY 

Solving inverse problems requires solving a large linear equation in the form of 
equation (14). Numerical examples showed that the LSPSTM problem is not solvable by 
the Jacobi or Gauss-Seidel iteration methods. Consequently, the standard multigrid 
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approach which uses Jacobi or Gauss-Seidel algorithms as iterative solvers is not 
applicable to the described problem. The requirement of large memory size is another 
problem associated with this method. 

The CG algorithm is an effective solver. The LSCG method has the advantage of 
using operators instead of matrices. However, the CG method does not have smoothing 
properties. Therefore, using the CG method as the multigrid solver does not increase the 
speed of convergence. This is shown on synthetic examples. 

Using the multigrid method with CG as the iterative solver may slightly reduce the 
number of iterations for the same rate of convergence, in comparison to the LSCG 
method, by introducing an initial value. However, it does not reduce the total 
computational cost. 
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