Integration of Seismic Methods with Reservoir Simulation, Pikes Peak Heavy Oil Field, Saskatchewan

Ying Zou

The Pikes Peak heavy oil field has been operated by Husky Energy Ltd since 1981. Steam injection has been successfully employed to increase production. Efforts in geophysics and reservoir engineering have been made to improve interpretations in the mapping of reservoir conditions. This dissertation developed tools and a working flow for integrating the analysis of time-lapse seismic surveys with reservoir simulation, and applied them to the Pikes Peak field.

Two time-lapse 2D seismic lines acquired in February 1991 and March 2000 in the eastern part of the field were carefully processed to produce wavelet and structure matched final sections. Reservoir simulation based on the field reservoir production history was carried out. It provided independent complementary information for the timelapse seismic analysis. A rock physics procedure based on Gassmann's equation and Batzle and Wang's empirical relationship successfully linked the reservoir engineering to the seismic method. Based on the resultant seismic models, synthetic seismic sections were generated as the analogy of field seismic sections.

The integrated interpretation for the Pikes Peak reservoir drew the following conclusions: The areas with a gas saturation difference, between two compared time steps, have seismic differences. Thicker gas zones correspond with large reflectivity changes on the top of the reservoir and larger traveltime delays in the seismic section. The thin gas zones only induce large reflectivity changes on the top of the reservoir, and do not have large time delays below the reservoir zone. High temperature regions also correlate with areas having large seismic energy differences. High temperature with thick gas (steam and methane) zones may be evidence for steam existence. The seismic differences at locations far from the production zone are due to the lower pressure that causes solution gas to evolve from the oil. Pressure changes propagate much faster (~20 m in one month) than temperature changes (~8 m in a year) based on the reservoir simulation results. The pressure dependence of the seismic data is due to its influences on gas saturation. The bypassed oil area and steam fronts (high temperature front) can be estimated from the temperature and oil saturation distributions from the reservoir simulation. AVO results show a steam and gas zone pattern similar to the one produced by reservoir simulation.